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ABSTRACT 

Advanced glycation end products (AGEs), also known as glycotoxins, are extremely reactive compounds produced 

during  glycation processes from endogenous or exogenous sources. They include the generation of the various group of 

compounds that are formed when reducing sugar, reacts in a non-enzymatic way with amino acids in proteins and other 

macromolecules. Those produce could play an important role in health, especially in diabetic complications, 

cardiovascular diseases, as well as delayed wound healing. Dietary AGEs intake contributes to the body AGE pool further 

prompting oxidative stress and progression inflammation. Furthermore, dietary AGEs are now considered as pathogenic 

disease precursors that employ multiple molecular mechanisms to influence cell and tissue physiology. The purpose of this 

review is to investigate the role of dietary AGEs in  Type II diabetes and related complication risk. 
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INTRODUCTION 

Advanced glycation end products (AGEs) are a complex group of extremely oxidant and biologically reactive 

compounds formed via a series of chemical chain reactions, which form through oxidation of sugars, lipids, and amino 

acids to create aldehydes that bind covalently to proteins [1,2]. The formation of AGEs is a normal part occurs during the 

aging process. However, most immediate and extreme accumulation occurs in patients with constant hyperglycemia and 

persistent oxidative stress [3]. Elevated blood glucose, a common consequence of uncontrolled diabetes, may lead to the 

development of macro- and microvascular problems [4]. It has been suggested that there is a linear relationship between 

hyperglycemia, increased oxidative stress, pro-inflammatory effects and excessive formation of AGEs [5].                        

Recently, Dietary AGEs intake considered as pathogenic disease precursors that employ and promoting oxidative stress, 

and progression inflammation reactions [6]. Pentosidine and �-N carboxymethyl-l-lysine (CML) has been well considered 

as biomarkers for the creation and accumulation of AGEs [7] and are recognized to play a crucial role in the path 

physiology of diabetes chronic complications [5].  
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AGEs Sources 

AGEs sources are endogenous exogenous. Endogenously, AGEs are formed as by-products of hyperglycemia [8]. 

Also, the formation of AGEs occurs in all tissues and body fluids under physiological conditions through glycation 

reactions [9]. It occurs in a spontaneous way with a small proportion of absorbed, simple sugars [10]. Moreover, AGEs can 

be formed from a variety of precursors for the Maillard reaction. The formation of AGE is usually endogenous but can be 

derived from exogenous sources such as tobacco smoke or food [11].  

Exogenously, AGEs are a complex group of compounds that are formed through the Maillard reaction [12].                

This reaction involves of some stages the first stage, glycation is started by the covalent attachment of reducing sugars to 

amino groups of proteins, lipids, or nucleic acids to produce reversible and an unstable Schiff base. Then, the Schiff base 

may undergo Amadori reorganization and alteration to a more stable Amadori product [9]. Consequently, Amadori 

products undergo more structural alterations through oxidation, dehydration, and degradation of  lastly yield extremely 

stable AGEs compounds [9, 12]. Furthermore, a diversity of other pathways such as autoxidation of glucose, ascorbate or 

lipid peroxidation, can also lead to AGE creation. The producers of this pathway usually are dicarbonyl intermediates such 

as methylglyoxal (MGO), glyoxal (GO), 3-deoxyglucosone (3-DG), glycolaldehyde, 1-deoxyglucosone [13] and free 

radicals [14].  

In biological systems, the process of AGEs formation begins under certain conditions, such as. Hyperglycemia, 

and/or an increase oxidative stress condition [15], also affecting short-lived substrates like hormones, enzymes, amino 

acids or lipids, and thus inducing functional and/or structural changes [16]. AGEs are formed continuously in the body, as 

a part of normal metabolism, but if the amount of AGEs is excessively high in circulation and tissue, they have possibilities 

to become pathogenic, which may cause the advancement and generation of chronic diseases [12].                               

The toxic effects of AGEs are specially related to their ability to promote inflammation and oxidative stress by binding to 

cell surface receptors or cross-linking with body proteins, altering their structure and function [17].  

Mechanism of Action 

The biological significances of AGEs can be exerting their impacts within the body by two different mechanisms. 

First one is structural distortion or stimulates crosslinking of body proteins, and the other one is interacting with AGE 

receptors. AGEs encourage protein cross linking and promote protein aggregation or tissue stiffness that contribute to 

losing their original function and stimulated endogenous generation of AGEs in diabetes complication [18].  

AGEs cross-linking with proteins depends on both the concentration of blood glucose and the rate turnover level 

of body proteins. Long-lived proteins are therefore more often changed by AGEs [19]. The proteins collagen and             

low-density lipoprotein (LDL) are also responsive to AGE cross-linking, subsequently stimulated arterial thickness and 

reduced uptake by LDL receptors [20]. Usually, AGEs accumulate in different organs appears to be correlated to diabetic 

micro -vascular complications and atherosclerotic [21]. Moreover, AGE deposition of  collagen leads to changes in the 

biochemical and structural property of the basement membrane affecting for instance, its elasticity, ionic charge, and 

stiffness [22]. Consequently, it has been demonstrated that accretion of AGE–cross-linking formed with vessel-wall 

collagen and basement membrane proteins, can lead to vascular dysfunction [23].  

AGEs Receptors  

One of the main mechanisms of action of AGEs may be via AGE sensitive receptors. These include AGEs 
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receptor (RAGE), oligosaccharyltransferase complex protein 48 (OST-48 or AGER1), 80 K-H proteins (AGER2),                 

galectin-3 (AGER3), and some scavenger receptors [24]. These receptors are present on vascular, renal, hemopoietic, and 

neuronal/ glial cells, and they serve in the regulation of AGEs uptake and removal. The AGEs receptors also modify cell 

stimulation, growth-related mediators, and cell proliferation, hence influencing organ structure and function. Furthermore, 

these receptors have been shown to play distinct functional roles in AGEs toxicity or detoxification [25]. Among the AGE 

-binding proteins, RAGE and AGER1 seem to be the most important, and in particular, RAGE has been thoroughly 

investigated [26]. 

RAGE Passive Enable of Inflammation 

RAGE is a single trans-membrane multi-ligand receptor which belongs to the immunoglobulin superfamily, 

whose members involve AGE-R, SR-A (macrophage scavenger receptor types I and II), and SR- B (SR-B type and CD36) 

[27]. RAGE receptors are physiologically mostly expressed in a varied range of tissues, including the vascular, endothelial, 

smooth muscle cells, neural tissue, and mononuclear cells [28]. 

The interaction between AGEs and RAGE prompted the stimulating of the mitogen-activated protein kinases 

(MAPKs), the phosphatidylinositol-3 kinase (PI3-K), and the nicotinamide adenine dinucleotide phosphate-oxidase 

(NADPH) [29]. The stimulation of these pathways could lead to the stimulation of the transcription factor NF-kB                    

(nuclear factor kappa B) which activates the transcription of genes for proinflammatory cytokines, growth factors and 

adhesive molecules, such as tumor necrosis factor a (TNF-a), interleukin 6 (IL-6) and vascular cell adhesion molecule 1 

(VCAM-1) [30]. Induction of these pro-inflammatory molecules might contribute to cellular dysfunction and damage 

target to organs, and in the end lead to complications as atherosclerosis, cardiovascular disease, and nephropathy [31]. 

Also, dietary AGEs have been shown to act as RAGE ligands and activate major signal transduction pathways in vitro 

[32]. 

Factors that Influence the Formation of AGEs During Food Heat Treatment  

Factors that influence the rate of AGEs generation depend on nutrient components, thermal processing, and water 

content during cooking, pH condition, the presence of precursors, availability of some metal ions, and pro-antioxidants 

[33]. Also, low moisture, prolonged cooking time [34]. At higher moisture levels, a decrease in reaction rate is observed 

due to dilution of the reactants in the aqueous phase. Water is a product of the reaction and it is probable that the law of 

mass action also leads to a decreased rate of reaction at high moisture levels [35]. Thus, foods with higher protein or lipid 

content are more susceptible to accelerate of AGEs formation during dry-heat processing [36]. The methods of heat 

treatment of foods seem to be more important to AGE generation than period of cooking time. An increase in temperature 

increases the rate of Maillard browns. More dAGE values are produced in foods exposed to dry heat cooking                                     

(grilling, frying, roasting, baking, and barbecuing) than foods cooked at lower temperatures for longer time periods in the 

presence of higher water content (boiling, steaming, poaching, stewing, or slow cooking) [37]. Excessive browning by 

high-heat cooking causes unpleasant changes in the food products and may produce potential mutagenic agents, such as 

Acryl amide, heterocyclic amines, and poly cyclic aromatic hydrocarbons [38]. 

There are many plans to decrease the dAGE intake by adding some herbs and spices; it has been described to have 

essential anti-glycation activity [39]. For example, Pre-marinating in acidic solution has been confirmed to impede the new 

AGE generation in cooked meat established that Phenolic compounds such as; rosemary, sage and marjoram are good 

strong inhibitors of CML production [8]. 
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Spice extracts, such as cloves and cinnamon, were also found to inhibit CML generation in foods than herb 

extracts58. Since foods, mainly composed of carbohydrate group generally contain lower amounts of AGEs due to the 

higher content of water and non-reducing sugars compared with meat and fats [8, 40]. 

Dietary AGEs: Intestinal Absorption and Bioavailability 

Lack understanding about the activity and metabolic effect of dietary AGEs. In recent years, it has become clear 

that knowledge about the creation of AGEs and their precursors within the food. In food, glycated amino acids are bound 

in protein and cannot be absorbed intestinally until the proteins are digested by gastric and intestinal peptidases into 

peptides and free amino acids. AGE-modified peptides are able to penetrate the gastrointestinal mucin layer, where they 

undergo further proteolytic cleavage into di- and tri-peptides at the intestinal brush-border in order to facilitate their 

absorption [41]. 

Low-molecular-weight AGEs (AGEs on free amino acids and those bound to di- and tri-peptides) are likely to be 

well absorbed by either simple diffusion or by peptide transporter proteins such as peptide transporter-1 [42]. However, 

cross linking low molecular- weight AGEs are less available for absorption because of their resistance to digestive 

enzymes. Moreover, most higher-molecular-weight AGEs also escape digestion in the upper gastrointestinal tract, 

primarily as an absolute result of cross linking and protein aggregation, and pass through to the large intestine, eventually 

being excreted in the feces and/or acting as a fermentation substrate for colonic microorganisms. Following bacterial 

fermentation, amino acids may become available as substrates for the formation of further toxic metabolites [43]. 

Kinetic studies have assessed that 10% to 30% of the diet obtained AGEs consumed are entering the intestinal 

metabolism and circulation system [44]. This suggests that the digestive barrier limits the bioavailability of food-derived 

AGEs, but the small amount absorbed could participate in the carbonyl stress, mainly in the case of associated diseases, 

such as diabetes or nephropathy [45]. The fate of the remaining 70%–90% of dietary AGEs that escape digestion and 

absorption in the human small intestine warrants further investigation. Since amino acids molecularly modified by heat are 

more probable to escape digestion in the upper gut [2] a significant proportion of dietary Maillard reaction products 

(MRPs) reach the colon, where they may modulate gut microbial growth [46].  

Recent studies indicate that consumption of a high-AGE diet for 2 weeks is sufficient to alter the colonic bacteria 

profile in humans [47]. Some studies have confirmed that a high-AGE diet results in significantly higher plasma AGEs 

levels (increased by 64.5%, p = 0.02), and increased mediators (tumor necrosis factor α, IL-1β, IL-6, and vascular adhesion 

molecule) of vascular dysfunction [27] 

Dietary AGEs and Health Implications 

Nutrient composition, temperature processing used in food processing and type of food preparation, cooking can 

influence the creation of AGEs in foods. Methods, Preparation by dry or high heat processed foods that containing sugars 

and/or lipids and proteins increase AGEs generation than carbohydrates boiled for the long time. Non-enzymatic browning 

reactions and generate AGEs [48]. 

Food-derived AGEs induce protein cross-linking and intracellular oxidant stress similar to their endogenous 

equivalents when tested in vitro using human-derived endothelial cells [49]. These pro oxidant and pro-inflammatory 

properties are as well found in the circulating AGE portions obtained from these exogenous AGEs. In a group of diabetic 

patients, dietary AGE restriction was associated with significant reduction of two biomarkers of inflammation, plasma 
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CRP and peripheral mononuclear cell TNF-α, in addition to of VCAM-1, an indicator of endothelial dysfunction [26]. 

These consequences were later extended to chronic renal failure patients on maintenance peritoneal dialysis, in whom 

dietary AGE restriction was linked with a parallel decrease of serum AGEs and CRP [50]. The parallel changes of serum 

AGEs and CRP succeeds dietary AGE alterations are highly indicative of a role for dietary AGEs in promoting 

inflammation processes. Continuous exposure to raised levels of endogenous and exogenous AGEs or advanced lip 

oxidation end products are thought to stimulate the pathogenesis and development of a variety of chronic conditions 

connected with immune cell activation and low-grade inflammation [51]. 

Diabetic Complications Pathogenesis are Correlated with AGES 

AGEs contribute to aging and disease by diverse mechanisms. The formation of AGEs and accumulation in the 

body is  natural processes during ageing, also increase rates of AGE accretion can accelerate the aging process [52].                 

The aggregate of AGEs  depends on the degree of formation, determined by ROS and decreasing sugars, and the rate of 

removal, determined by the activity of the glyoxalase system, where glyoxalase I (Glo I ) is able to detoxify reactive 

carbonyl compounds [53]. Aging can affect an imbalance in this system, since ROS is present in a larger extent while Glo I 

activity is decreased. Glycation produces AGEs compounds with toxic properties linked with inflammation and oxidative 

stress [3]. In addition, AGE accumulation is aggravated in some chronic diseases. AGEs can impair cells and tissues 

through several mechanisms and thereby contribute to aging or disease [54]. 

In diabetes or renal disease, AGEs generate more rapidly due to glycative and oxidative stress or weakened renal 

clearance [55]. Then that lead to stimulate the progression and development of diabetes problems, including micro vascular 

complication. AGEs employ their negative effects on cell functions by several mechanisms such as the creation of free 

radicals, altering enzyme activity, adapting immunogenicity, oxidation of nucleic acids or lipids or interact with AGEs 

receptors on the cell surface [56]. 

AGEs and Cardiovascular Diseases 

AGEs could contribute to the development of heart failure by different mechanisms; AGEs can affect the 

physiological properties of proteins in the ECM by inducing the formation of cross-links. Also, AGEs can cause 

intracellular changes in vascular and myocardial tissue via interaction with AGE receptor [57]. The collagen-AGEs cross 

linking will produce stiffness of blood vessels [58]. Vascular stiffening alters the elasticity of large arteries and induces 

increased systolic pressures, with deleterious consequences on the heart, including cardiac hypertrophy and increased 

ventricular oxygen consumption [59]. Additionally, AGEs may exert the cardiovascular system impairment by reduction of 

LDL uptake by cell receptor [60]. AGE also induces the release of pro-fibrotic proteins, Transforming Growth Factor 

(TGF) and pro-inflammatory cytokines, such as IL-6 and TNF-α [61]. AGE concentration  correlates with free fatty acids 

levels, which are increased in patients with visceral fat, who are at high risk for cardiovascular diseases[62]. Consequently, 

AGEs accumulation could describe some of the cardiovascular alterations related to the cardiac diseases seen in diabetes, 

such as vascular stiffening, endothelial dysfunction and diastolic dysfunction [4]. 

AGEs and Diabetes Micro-Vascular Complications 

AGEs in Diabetic Retinopathy 

Retinopathy is a severe vascular complication of  diabetes, which may progressively lead to blindness. In diabetic 

retinopathy, the accumulation of AGEs leads to disorders like thickening of the capillary basement membrane, enhancing 
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of permeability of capillaries and vascular leakage, apoptosis of pericytes [63]. Apoptosis of pericytes is a key factor in 

retinopathy by triggering endothelial activation and dysfunction, leading tone angiogenesis and thrombogenesis [64]. 

Hyperglycemia stimulates an excessive expression of RAGE on pericytes and endothelial cells, leading to a deterioration 

of pericytes and loss of pericytes ,which result in vascular damage and clinical expression of retinopathy [65]. In addition, 

subjects with retinopathy were found to have increased levels of AGEs and IL-6 in the eye vitreous. IL-6 could also 

promote angiogenesis by increasing expression of the vascular endothelial growth factor [9]. which leads to blindness or 

poorness of vision [66]. 

AGEs in Diabetic Nephropathy 

A progressive loss of kidney function has been clearly demonstrated in diabetic patients, correlating with 

increasing circulating AGE levels [67]. Patients with diabetic nephropathy have a dual form of damage; an increased 

formation of serum AGEs and reducing in their clearance [68]. Diabetic nephropathy is characterized by a thickening of 

the basement membrane, expansion of the mesangium, decreased filtration, albuminuria, and renal failure. The number of 

AGEs that have been detected in renal tissues were correlated with the severity of diabetic nephropathy [69]. 

AGEs play a key role in glomerular nephropathy as they accumulate in glomerular basement membrane and 

interact with mesangial cells, endothelial cells, and podocytes, to trigger oxidative stress, inflammatory signaling, and 

apoptosis [70]. Hyperglycemia and serum elevation of AGEs enhance the level of transforming growth factor-b (TGF-b), 

which stimulates the formation of the collagen matrix and basal membrane thickening [71]. Furthermore, accretion of 

growth factors that promote vascular permeability and reduces barrier activities, which may result in a kidney malfunction. 

Oxidative stress and the secretion of growth factors and cytokines are involved in AGEs-induced nephropathy and are 

entangled with the activation of the reninangiotensin system, which also generates ROS and growth factors [72]. 

AGEs in Diabetic Neuropathy 

Diabetic neuropathy is characterized by segmental demyelination and axonal degeneration of peripheral neurons, 

with functional abnormalities such as reduced nerve conduction and blood flow. Peripheral neuropathy is a common 

diabetes complication associating nerve dysfunction and loss of pain perception, associated with an increased risk for 

developing ulcerations and necrosis, particularly diabetic foot, and impaired wound healing (potentially leading to               

lower-limb amputation) [73]. High levels of AGEs have also been found in the peripheral nerves of diabetic patients [24]. 

In vitro studies have shown an increased glycation of myelin in diabetes. Nerve demyelination seen in diabetic neuropathy 

could be explained by phagocytosis of the glycated myelin by macrophages [74]. The AGE-RAGE interactions determine 

the upregulation of nuclear factor kappa B (NF-kB), protein kinase Cβ2 and various NFkB facilitated pro-inflammatory 

genes, an augmented neurological dysfunction, including altered pain sensation and stimulation of the creation of new 

glycoxidation products such as N-epsilon-(carboxymethyl)-lysine and pentosidine [75]. In animal studies, when AGEs are 

injected into peripheral nerves there is a reduction of sensory-motor conduction velocities, nerve action potentials, and 

blood flow [9]. However, the mechanism by which AGEs could be involved in diabetic neuropathy is not clear. 

CONCLUSIONS 

The process of advanced glycation seems to be improved in the diabetes mellitus as a result of hyperglycemia and 

other stimuli such as oxidative stress and generation of pro-inflammatory pathways, which further leads to the progression 

and development of diabetic complications. Endogenous AGEs and dietary AGE intake contribute significantly to the body 
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AGE pool. Dietary AGEs are now considered as  pathogenic disease precursor that employ multiple molecular 

mechanisms to affect cell and tissue physiology via activating pro-oxidant and pro-inflammatory signaling pathways. 

Finally, large clinical trials are demanded to study the effects of dietary AGEs in as an important approach to reduce 

diabetic complications and the optimal strategies must be prepared to minimize AGE -related pathology. 
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